A new nanodevice developed by MIT researchers can help prevent cancer tumors from growing back after chemotherapy, according to a new study published in the Proceedings of the National Academy of Sciences for the week of March 2.
A new nanodevice developed by MIT researchers can help prevent cancer tumors from growing back after chemotherapy, according to a new study published in the Proceedings of the National Academy of Sciences for the week of March 2.
The device, which consists of gold nanoparticles embedded in a hydrogel that can be injected or implanted at a tumor site, first blocks the gene that confers drug resistance and then launches a new chemotherapy attack against the disarmed tumors.
“Drug resistance is a huge hurdle in cancer therapy and the reason why chemotherapy, in many cases, is not very effective”, says João Conde, lead author of the paper and an MIT Instititute for Medical Engineering (IMES) postdoctorate.
Related:FDA approves antiemetic agent for prevention of chemotherapy-induced nausea and vomiting
Plus, the nanodevice can be used to target any genetic marker and deliver a drug, “including those that don’t necessarily involve drug-resistance pathways,” said Natalie Artzi, a research scientist at MIT’s IMES (IMES), an assistant professor at Harvard Medical School, and senior author of the paper. “It’s a universal platform for dual therapy.”
To demonstrate the effectiveness of the new approach, Artzi and colleagues tested it in mice implanted with a type of human breast tumor known as a triple negative tumor. Such tumors, which lack any of the 3 most common breast cancer markers - estrogen receptor, progesterone receptor, and HER2 - are usually very difficult to treat.
Using the new device to block the gene for multidrug-resistant protein 1 (MRP1) and then deliver the chemotherapy drug 5-fluorouracil, the researchers were able to shrink tumors by 90% in 2 weeks.
In mouse studies, the researchers found that the particles could silence MRP1 for up to 2 weeks, with continuous drug release over that time, effectively shrinking tumors.
This approach could be adapted to deliver any kind of drug or gene therapy targeted to a specific gene involved in cancer, the researchers say. They are now working on using it to silence a gene that stimulates gastric tumors to metastasize to the lungs.
Related:FDA speeds up drug, device approvals
“This is an impressive study that harnesses expertise at the interface of materials science, nanotechnology, biology, and medicine to enhance the efficacy of traditional chemotherapeutics,” says Jeffrey Karp, an associate professor of medicine at Harvard Medical School and Brigham and Women’s Hospital, who was not involved in the research. “Hopefully this approach will perform in studies beyond 14 days and be translatable to patients, who are desperate for new and more effective treatment regimens.”
Navitus to Offer Unbranded Stelara Biosimilar, Remove Stelara from Formulary
March 13th 2025Lumicera Health Services, Navitus’ specialty pharmacy, has made a deal with Teva to offer an unbranded biosimilar that they estimate will save $112,000 and $336,000 per patient per year. Navitus will remove Stelara from formulary on July 1, 2025.
Read More
FDA Approves Neffy 1 mg Nasal Spray for Pediatric Patients
March 6th 2025Neffy 1 mg is now approved by the FDA to treat pediatric patients who weigh 33 to 65 lbs. Neffy was first FDA-approved as a 2 mg dose in August 2024 for the emergency treatment of anaphylaxis in children and adults weighing at least 66 lbs.
Read More